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Abstract—A new family of readily available modular phosphite, phosphoramidite and diamidophosphite ligands with P*-stereo-
centres have been prepared from inexpensive optically active precursors. Using these novel ligands, up to 91% ee was achieved
in Pd-catalysed asymmetric allylic amination. The catalytic performance is affected greatly by the structure of the phosphocentre

of the ligand.
© 2007 Elsevier Ltd. All rights reserved.

Optically active phosphite-type compounds are a very
attractive and developing class of phosphorus-contain-
ing ligands. As a whole, the most important advantages
of chiral phosphites include their pronounced m-acidity,
oxidation stability, as well as their synthetic availability
and low cost.! In particular, phosphites provide broad
opportunities for fine tuning of their donor-acceptor
and steric properties by the incorporation of oxygen
and nitrogen into the first coordination sphere of phos-
phorus and wide variation of the O- and/or N-contain-
ing building blocks. Most phosphites can be synthesised
rather simply and in high yield from a variety of
optically active precursors. This makes it possible to
perform the direct one-pot phosphorylation of chiral
compounds, whereas the synthesis of the corresponding
phosphine derivatives requires preliminary modification.
In addition, these compounds exhibit higher oxidative
stability because of the absence of P-C bonds. Hence,
this makes it possible to develop protocols for the whole
process including ligand synthesis that do not necessitate
the use of a glove box.

Surprisingly, there are only a few examples of very
promising P*-chiral monodentate phosphite-type
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ligands in the literature. The structures of the most effi-
cient examples are shown in Figure 1. Compounds
L, have demonstrated high enantioselectivity in the
Pd-catalysed allylic substitution reactions of (FE)-1,3-
diphenylallyl acetate and methyl (2-phenylortho-carbo-
ran-1-yl)phenyl acetate; > Ly, and L, are highly enantio-
selective in the Rh-catalysed hydrogenation of
functionalised olefins.?

We designed and synthesised a library of novel P*-chiral
monodentate phosphite, phosphoramidite and diamido-
phosphite ligands having five- and six-membered phos-
phacycles and OMe or NEt, exocyclic substituents.
These were easily prepared by direct phosphorylation
of the appropriate bifunctional compounds and purified
by vacuum distillation. They possess modular proper-
ties, allowing fine-tuning of their steric and electronic
characteristics (Scheme 1).* The starting optically active
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diols, aminoalcohols and diamines used were commer-
cially available or were synthesised from (+)-2- and
3-carenes; (S)-mandelic, (S)-2-amino-2-phenylacetic, (S)-
1,2,3,4-tetrahydroisoquinoline-3-carboxylic and malonic
acids; p-xylofuranose and (S)-oxo-proline.® Since all
these precursors are inexpensive and readily available,
ligands 1-11 can be prepared on multigram scales.

The *'P NMR spectroscopic data for ligands 1-11 are
summarised in Table 1. Ligand 3 possesing an NEt, exo-
cyclic fragment was formed as a single stereoisomer,
while ligands 1, 2 and 4-11 each contain from 2% to
38% of the epimeric form at the P-stereocentre.
Terpene-based compounds 1-2, phosphoramidites 9
and 10 with six-membered phosphacycles and diamido-
phosphites 11a—d possessing a bicyclic framework were
characterised as containing small amounts of the minor
epimer. In the case of 11a-d, the major stereoisomers
have R-configuration at the P*-stereocentre. This was
confirmed from the characteristic “Jep,np values
(36.4-38.2 Hz) in the '3C NMR spectra of 11a-d.2* To

Table 1. *'P NMR chemical shifts (CDCls) and cone angles 0 (deg) of
ligands 1-11

Ligand op 0*
1 141.5 (95%), 151.2 (5%)° 97.9
2 141.0 (97%), 147.1 (3%) 90.4
3 152.5 1223
4 138.7 (66%), 143.9 (34%) 121.5
5 138.5 (62%), 141.7 (38%) 102.3
6 138.8 (36%), 140.1 (64%) 117.6
7 140.1 (67%), 150.7 (33%) 106.4
8 136.1 (78%), 141.5 (22%) 101.4
9 134.6 (96%), 140.4 (4%) 92.6
10 130.6 (98%), 139.3 (2%) 116.0
11a 128.2 (11%), 133.6 (89%) 145.0
11b 125.0 (9%), 131.2 (91%) 153.1
11c 128.0 (8%), 133.7 (92%) 146.2
11d 128.7 (5%), 134.1 (95%) 146.4

#Tolman’s angles.
® Percentage of P*-epimers.

11¢ R = (5)-CH(Ph)Me
11d R = (R)-CH(Ph)Me

estimate the steric demands of ligands 1-11, we calcu-
lated their Tolman’s angles® by the reported method
using semiempirical quantum mechanical AM1 tech-
niques with full optimisation of geometrical para-
meters.> The results obtained (Table 1) show that the
steric demands of 1-11 vary over a wide range between
90° and 153°, peaking at compounds 11a—-d with the 1,3-
diaza-2-phosphabicyclo[3.3.0]octane skeleton.

The library of 14 novel P*-chiral monodentate phos-
phite-type ligands was screened in the enantioselective
Pd-catalysed allylic substitution of (E)-1,3-diphenylallyl
acetate 12 as a benchmark test (Scheme 2). The reactions
were performed in THF or CH,Cl, at room temperature
over 48 h (with [Pd(allyl)Cl],, L/Pd =1 or 2) according
to the published procedures.>’ The results obtained
allowed us to divide the ligands into two groups contain-
ing different numbers of the ligands. Compounds 1-10
demonstrated poor to mediocre enantioselectivity and
conversion. The highest enantioselectivites of products
13, 14 and 15 were 59% (in the case of 8), 54% and
17% (in the case of 9), respectively. In general, there
was no correlation between the efficiency of 1-10 and
their Tolman’s angles and the ratio of P*-epimers. For
example, practically enantiopure ligands 2 and 3 with
different cone angles values (Table 1) gave no enantio-
selectivity in the synthesis of 13-15. It should be noted
that the well-known phosphoramidite Ly, (Z = OMe),?
similar to 1-10 has shown moderate efficiency: up to
40% ee in the allylic sulfonylation of 12 with NaSO,pTol
and up to 66% ee in the allylic alkylation of 12 with
dimethyl malonate.

At the same time, the use of diamidophosphites 11a-d
resulted in moderate to good yields and enantioselecti-
vities of the products in most cases (Tables 2 and 3).
Hence, for these ligands, cationic palladium catalysts
16a-d were prepared according to known procedures?
(Scheme 3). In the allylic sulfonylation, employing com-
plex 16b as the chiral auxiliary, product 13 was obtained
in 70% ee (Table 2, entry 6). On the other hand, complex
16a was found to be the best catalyst in the allylic



8328 E. B. Benetsky et al. | Tetrahedron Letters 48 (2007) 83268330

Me
\@\ + CH,(CO,Me),, MeO,C.__CO,Me

SO, + NaSO,pTol, cat OAc BSA, cat /\/\[
- - e e
ph/\)*\ Ph Ph/\)\ Ph Ph” X"+ Ph

13 12 14
+ (CH,),NH, cat

!

N
Ph/\)*\ Ph

15

Scheme 2. Pd-catalysed allylation.

alkylation. The highest enantioselectivity (84% ee) was phosphites 11¢,d with an additional C*-stereocentre in
obtained in CH,Cl, (Table 2, entry 15). Diamido- the N(CH(Ph)Me) moieties were less efficient. They led

Table 2. Pd-catalysed allylic sulfonylation of 12 with NaSO,pTol (20 °C, 48 h) and allylic alkylation of 12 with dimethyl malonate (BSA, KOAc,
20°C, 48 h)

Entry Catalyst L/Pd Solvent Conv.™® (%) ee®d (%)
Allylic sulfonylation
1 [Pd(ally)ClL,/11a 1/1 THF 48 46 (S)
2 [Pd(allyl)ClL/11a 2/1 THF 52 58 (S)
3 16a 2/1 THF 50 39 (S)
4 [Pd(ally)CI]L/11b 1/1 THF 80 55(S)
5 [Pd(allyl)Cl],/11b 2/1 THF 60 40 (8)
6 16b 2/1 THF 65 70 (S)
7 [Pd(allyl)Cl]/11c 1/1 THF 34 34.(S)
8 [Pd(allyl)Cl]/11c 2/1 THF 71 33 (S)
9 16¢ 2/1 THF 49 11 (8)
10 [Pd(allyl)Cl],/11d 1/1 THF 32 43 (8)
11 [Pd(allyl)Cl]/11d 2/1 THF 30 49 (S)
12 16d 2/1 THF 53 56 (S)
Allylic alkylation
13 [Pd(ally)ClL,/11a 1/1 CH,Cl, 83 47 (S)
14 [Pd(allyl)Cl},/11 2/1 CH,Cl, 65 30 (S)
15 16a 211 CH,Cl, 100 84 (S)
16 16a 2/1 THF 40 19 (S)
17 [Pd(allyl)ClL/11b 1/1 CH,Cl, 36 36 (S)
18 [Pd(allyl)ClL/11b 2/1 CH,Cl, 80 17 (S)
19 [Pd(allyl)ClL/11b 1/1 THF 21 23 (S)
20 [Pd(allyl)Cl],/11b 2/1 THF 40 53 (S)
21 16b 2/1 CH,Cl, 90 30 (S)
22 16b 2/1 THF 22 26 (S)
23 [Pd(allyl)ClL/11c 1/1 CH,Cl, 21 11 (S)
24 [Pd(allyl)Cl},/11c 2/1 CH,Cl, 95 61 (S)
25 [Pd(allyl)ClL/11¢ 1/1 THF 16 28 (S)
26 [Pd(allyl)Cl],/11c 2/1 THF 12 2(S)
27 16¢ 2/1 CH,Cl, 26 45 (S)
28 16¢ 2/1 THF 78 3(S)
29 [Pd(allyl)ClL/11d 1/1 CH,Cl, 65 50 (S)
30 [Pd(allyl)Cl],/11d 2/1 CH,Cl, 90 60 (S)
31 [Pd(allyl)ClL/11d 1/1 THF 50 59 (S)
32 [Pd(allyl)Cl],/11d 2/1 THF 30 65 (S)
33 16d 2/1 CH,Cl, 74 65 (S)
34 16d 2/1 THF 55 72 (S)

#Tsolated yield of 13 from the allylic sulfonylation.

® Conversion of 12 in allylic alkylation was determined by HPLC (Daicel Chiralcel OD-H).

¢ Enantiomeric excess of 13 was determined by HPLC (Daicel Chiralcel OD-H, C¢H 4/iPrOH = 4:1, 1 ml/min, 254 nm).

9 Enantiomeric excess of product 14 was determined by HPLC (Daicel Chiralcel OD-H, C¢H14/iPrOH = 99:1, 0.6 ml/min, 254 nm).
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Table 3. Pd-catalysed allylic amination of 12 with pyrrolidine (20 °C, 48 h)

Entry Catalyst L/Pd Solvent Conv.” (%) ee® (%)
1 [Pd(allyl)Cl],/11c 1/1 CH,Cl, 85 11(S)
2 [Pd(allyl)ClL/11¢c 2/1 CH,Cl, 94 20 (S)
3 [Pd(allyl)ClL/11¢ 1/1 THF 10 25 (S)
4 [Pd(allyl)ClL/11¢ 2/1 THF 21 5(S)
5 16¢ 2/1 CH,Cl, 24 20 (S)
6 16¢ 2/1 THF 95 45 (S)
7 [Pd(allyl)CI],/11d 1/1 CH,CL 85 58 (R)
8 [Pd(ally)ClL/11d 2/1 CH,Cl, 97 62 (R)
9 [Pd(allyl)CI},/11d 1/1 THF 100 66 (R)

10 [Pd(allyl)CI},/11d 2/1 THF 100 63 (R)

11 16d 2/1 CH,Cl, 68 47 (R)

12 16d 2/1 THF 62 26 (R)

13 [Pd(allyl)ClL,/17 11 CH,Cl, 43 89 (R)

14 [Pd(ally)CI],/17 211 CH,Cl, 100 91 (R)

15 18 2/1 CH,Cl, 67 90 (R)

16 18 2/1 THF 43 88 (R)

#Conversion of 12 in allylic amination was determined by HPLC (Daicel Chiralcel OD-H).
® Enantiomeric excess of product 15 was determined by HPLC (Daicel Chiralcel OD-H, C4H,4/iPrOH/Et,NH = 200:1:0.1, 0.9 ml/min, 254 nm).

: L1+ BF, 16a(L=11a)
L+ 1/2 [Pd(allyl)Cl],, AgBF, <(*Pd/ 1 4 16b (L =11b)

L 16¢ (L =11c¢)
16d (L =11d)

Scheme 3.

to the formation of products 13 and 14 with S-configu-
ration and with higher optical yields for 11d due to a
matched combination of the (2R,5S)-phosphocentre
with the N[(R)-CH(Ph)Me] fragment. In contrast, only
poor stereoselectivity was obtained in the Pd-catalysed
allylic amination of 12 with pyrrolidine using ligands
11a (up to 35% ee) and 11b (up to 12% ee). Compounds
11c and 11d were found to be more efficient catalysts,
enantioselectivities up to 45% and 66% ee, respectively,
were obtained in THF as the optimal solvent (Table 3,
entries 6 and 9). Opposite enantiomers of the amine
were formed when using 11c and 11d (Table 3, entries
1-6 and 7-12). It can be assumed that ligands 11a—d lead
to a better chiral induction than compounds 1-10 due to
their high steric demands (Table 1, 0 = 145-153°) and
the presence of a rigid 1,3-diaza-2-phosphabicy-
clo[3.3.0]octane framework.

Another approach to enhance the asymmetrising activ-
ity of P*-chiral phosphite-type compounds is the synthe-
sis of the respective P,N-bidentate ligands with
additional C*-stereocentres in the peripheral N-containing

Scheme 4.

group. In particular, we have prepared oxa-
zolinophosphite 17 using phosphoramidite 3 as a
phosphorylating reagent (Scheme 4).8 Compound 17
acts as a typical P,N-bidentate ligand to form chelate
cationic complex 18 by reaction with [Pd(allyl)Cl],
according to the published procedure (Scheme 4).%1°
Using the allylic amination of (E)-1,3-diphenylallyl
acetate 12 with pyrrolidine as an example (Scheme 2),
it was shown that the use of Pd-catalysts with oxa-
zolinophosphite 17 leads to a dramatic improvement
in enantioselectivity. Starting compound 3 as well as
ligand 2 produced reaction product 15 as an almost
racemic mixture, whereas up to 91% ee was achieved
using 17 (Table 3, entries 13-16).

A new family of ligands with P"-stereocentres has been
prepared from inexpensive optically active precursors.
These novel ligands were tested in Pd-catalysed asym-
metric allylic amination. The catalytic performance is
affected greatly by the structure of the phosphocentre
of the ligand.

In summary, new modular P*-chiral phosphite-type
ligands require a systematic search for adequate cata-
lytic transformations. As stated above, ligand Ly, results
in only moderate enantioselectivity in Pd-catalysed allyl-
ations, but is excellent in Rh-catalysed hydrogenation.
Further testing of ligands 1-11 and 17 in other bench-
mark reactions is in progress in our laboratory.

+ 1/2 [Pd(ally)CI],. AgBF, / 1 *BE,
e

18
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